Deep Learning for SAR Image Despeckling
نویسندگان
چکیده
منابع مشابه
Learning a Dilated Residual Network for SAR Image Despeckling
In this paper, to break the limit of the traditional linear models for synthetic aperture radar (SAR) image despeckling, we propose a novel deep learning approach by learning a non-linear endto-end mapping between the noisy and clean SAR images with a dilated residual network (SARDRN). SAR-DRN is based on dilated convolutions, which can both enlarge the receptive field and maintain the filter s...
متن کاملDictionary Learning for SAR Images Despeckling: A Comparative Study
In recent years, dictionaries combined with sparse learning techniques became extremely popular in computer vision. The image denoising approaches can be categorized as spatial domain, transform domain, and dictionary learning based according to the image representation. Using machine learning, sparse representations have become a trend and are used image and vision applications. The general id...
متن کاملAn Adaptive Sar Image Despeckling Algorithm Using Stationary Wavelet Transform
In this paper, we present a Stationary Wavelet Transform (SWT) based method for the purpose of despeckling the Synthetic Aperture radar (SAR) images by applying a maximum a posteriori probability (MAP) condition to estimate the noise free wavelet coefficients. The solution of the MAP estimator is based on the assumption that the wavelet coefficients have a known distribution. Rayleigh distribut...
متن کاملSAR Image Despeckling Using Quadratic-Linear Approximated L1-Norm
Speckle noise, inherent in synthetic aperture radar (SAR) images, degrades the performance of the various SAR image analysis tasks. Thus, speckle noise reduction is a critical preprocessing step for smoothing homogeneous regions while preserving details. This letter proposes a variational despeckling approach where `1-norm total variation regularization term is approximated in a quadratic and l...
متن کاملSAR Image Despeckling Algorithms using Stochastic Distances and Nonlocal Means
This paper presents two approaches for filter design based on stochastic distances for intensity speckle reduction. A window is defined around each pixel, overlapping samples are compared and only those which pass a goodness-of-fit test are used to compute the filtered value. The tests stem from stochastic divergences within the Information Theory framework. The technique is applied to intensit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2019
ISSN: 2072-4292
DOI: 10.3390/rs11131532